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Abstract : Atrial natriuretic peptide (AN?) is a cardiac hormone with potent diuretic and
natriuretic properties. This hormone mediates a finely tuned control mechanism for the
maintenance of blood pressure and volume. The altered pressure and volume in many important
cardiovascular diseases suggest that understanding the functional role of ANP is inlegral to
these conditions. AN? levels are increased in a wide variety of cardiac disorders such as
hypertension. diabetes, congestive heart failure. myocardial infarction and valvular heart diseases.
Several studies have indicated a positive correlatioo between the severity of cardiac disorders and
plasma AN? levels highlighting its importance as a prognostic factor in cardiovascular diseases.
Furthermore, its compensatory role in these situations has prompted a world-wide investigation
on the use of AN? as a drug in cardiac diseases and it is nOl surprising that there has been a
wealth of scientific papers on this subject. This review attempts to summarize the present
knowledge concerning the physiology of AN? and evaluates some of the latest experimental
findings and opinions on the involvement of AN? m cardiovascular diseases.
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INTRODUCTION

It was the classic work of DeBold et aI. (1) who
discovered that the heart is something more than a
pump. Injection of the atrial extracts induced a
profound diuresis and natriuresis in rats suggesting
the presence of a putative natriuretic factor which they
appropriately labelled as atrial natriuretic peptide
(ANP). ANP has been shown to be central to the
regulation of body fluid status encompassing a wide
spectrum of actions including natriuresis, diuresis,
vasodilatation increase in renal blood flow and
glomerular filtration rate and decrease in aldosterone
production, renin and catecholamine release, thirst and
vasopressin secretion. Many cardiovascular diseases are
associated with an over expression of the ANP in
experimental models and in humans. This recruitment
phenomenon might be considered as the appropriate
response to maintain circulatory homeostasis. Measure­
ments of the elevated plasma ANP and urinary cG MP
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levels have suggested a compensatory role for ANP in
cardiovascular diseases. The present brief review will
summarize the current understanding of ANP metabo­
lism and its role in maintaining fluid volume. An effort
will also be made to place ANP in perspective in
volume-related disorders affecting the cardiovascular
system.

PHYSIOLOGY OF ATRIAL NATRfURETIC
PEPTIDE

Synthesis storage and degradation

The discovery by DeBold and co-workers of the
potent diuretic and natriuretic properties of atrial ex­
tracts (1) led to the identification of a cardiac hormone,
aptly termed as atrial natriuretic peptide (ANP).
Elucidation of the molecular structure of circulating
ANP and its precursors showed that it is synthesized
as 15I-amino acid molecule called prepro-ANP (2).
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The human sequence (3) shares strong homology with
those in rat (4), dog (5), and rabbit (5). Cleavage of
the hydrophobic-residues rich "signal" peptide yields
pro-ANP (1-126), the principal storage form of the
peptide (6). Bioactive peptides are derived from the
carboxy-terminus, with the predominant circulating
form being ANP (1-28) (7). Proteases (8) present in
the atrial tissue and serum are responsible for this
conversion to the active peptide. It must be pointed out
however that human ANP is identical to that in rats
except for the substitution of methionine for isoleucine
at position 12 (9).

In addition to atrial myocytes, ANP has been
shown to be synthesized and stored in a wide variety
of tissues and their contribution in the overall body
fluid homeostasis is still under investigation. Atrial
natriuretic gene expression has been observed in fetal
ventricles (10), aortic arch (11), lung (12), anterior
pituitary (12), hypothalamus (12), brain (13), adrenals
(14) and kidney (15). It is important to mention that
in the fetus, the ANP content and mRNA levels are
lower in the atria than in the ventricles, and these
distributions reverse in early post-natal life (10).
Similarly, in adults with normal cardiovascular hemo­
dynamics, the ANP gene is expressed in both the
ventricles and atria, but the concentration in the
ventricles appears very low. However, a reinduction of
the ANP gene occurs in ventricles "under stress" as
in congestive heart failure (16).

ANP is a short-acting peptide with a half-life of
2 to 4 minutes in animals and humans, with maximal
degradative poiency being attributed to the kidney (17).
The brush border of the proximal tubule in the
kidney is very rich in degradative enzymes and plays
a major role in degrading other peptides. Cleavage of
the disulfide bond (Cys-Phe) at position 7-8 by a
metalloendopeptidase variously termed enkephalinase
or neutral endopeptidase (EC 24.11) disrupts the ring
structure of ANP (18). This endopeptidase can be
inhibited by phosphoramidon or thiorphan (19),
UK69578 and UK79300 (20) with corresponding
increases in plasma ANP, urinary cGMP (the second
messenger of ANP) and urinary sodium. Thus inhibi­
tion of this endopeptidase leads to an augmentation of
the hypotensive, natriuretic, and urinary cGMP
responses to ANP, suggesting a therapeutic potential
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for selective inhibitors or EC 24.1 I. In addition to
degradation by ectozymes, ANP is also removed from
the circulation by binding to the so-called "clearance"
receptor (discussed later). This plasma membrane
protein is expressed in large abundance on vascular
endothelial cells (21). It has a long extracellular ANP
binding domain and a very short intracellular domain
and thus serves to inactivate the circulating plasma
ANP. These mechanisms represent the two primary
ways of inactivating the circulating ANP.

ANP is secreted in response to a variety of
mechanical and humoral stimuli. Cardiac stretch has
been suggested as the principal mediator of ANP
release (22). This belief arose from the fact that
inflation of a balloon in the left atrium of dogs
induced a marked increase in urine flow (23), whereas
prevention of atrial stretch in volume-expanded animals
abolished this renal response (24). Similarly Langen­
dorff heart-lung preparations in rats release bioactive
or immunoreactive ANP in response to atrial stretch
induced by volume expansion (25). Ledsome et al. (26)
observed increased plasma ANP levels in dogs sub­
jected to mitral valve obstruction. Atrial distension
which accompanies acute and chronic volume over­
loading in rats (27) and humans (28) is responsible for
the raised plasma ANP levels. Similar increments in
plasma ANP levels have been documented in patho­
logical states associated with increased atrial pressures
including rapid tachyarrhythmias, congestive heart
failure and various disorders associated with expansion
of extracellular fluid volume.

Apart from these mechanical stimuli, ANP is
also released in response to humoral stimuli. Gluco­
corticoids and mineralocorticoids have been shown to
have a priming effect for ANP release (29). Dexam­
ethasone, a long acting steroid, can increase ANP gene
transcription (30). Several other factors also influence
ANP secretion. Acetyclcholine, epinephrine and and
vasopressin all cause release of a natriuretic substance
from rat atrial tissue in vitro, as detected by bioassay
(31, 32). In vivo, intravenous administration of vaso­
pressin, angiotensin II or phenylephrine raises plasma
ANP levels in rats, possibly due to their systemic
vascular effects since the rise in plasma ANP corre­
lates closely with elevations in mean arterial blood
pressure (33). Endothelin, a newly discovered potent
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vasoconstrictor peptide elaborated from endothelial
cells in response to increased shear stress and a vari­
ety of chemical agonists (e.g. thrombin, epinephrine,
phorbol esters) has been shown to augment plasma
ANP levels (34) as well as ANP relea.~ from isolated
cardiac myocytes (35), from isolated contracting right
atria (36) and from isolated heart preparations (34).

Biological effects

A prominent effect of ANP is the enhancement
of renal sodium and watcr excretion (37,38). This
natriuresis and diuresis is accompanied by similarly
marked increases in phosphate, calcium, magnesium,
chloride, and cGMP excretion (39-41). Studies utiliz­
ing inhibitors of ANP degradation (42) as well as
specific anti-ANP antisera (43,44) have shown that
elevation of circulating ANP levels are accompained
by increased salt and water excretion.

The observed solute and water excretion could
be explaincd as a response to increased renal blood
flow. However, in studies showing augmented renal
blood flow, the increase was transient, lasting less than
a minute (45). It is perhaps true that changes in
sympathetic nervous tone and the circulating levels of
vasconstrictors can modify overall vascular respon­
siveness to ANP. Therefore changes in renal blood
flow per se are not the major factors responsible for
enhanced renal solute excretion (46).

Many studies have demonstracted that ANP
increases GFR and fIltration fraction (47). ANP dilates
preglomerular (afferent) artierioles and cons~icts

postglomerular (efferent) arterioles effectively increas­
ing hydraulic pressure within glomerular capillaries
(48) while offsetting effects on glomerular blood flow.
Using quantitative video microscopy, Marin-Grez et al.
(49) observed dose-dependent dilatation of arcuate,
interlobular, and proximal afferent vessels and cons­
triction of efferent arterioles in response to ANP
infustion. Fried et al. (50) examining isolated perfused
dog glomeruli, reported significant increases in glom­
erular hydraulic pressure and efferent resistance. In
addition, ANP may act to relax glomerular mesangial
cells (51). This effect may alter GFR in two ways.
First, relaxation of the mesangial cells results in
expansion of capillary surface area available for
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filtration (52) and thereby opening regions of the
capillary tuft for perfusion and ftltration. Second, these
cells increase the K

f
i.e. the glomerular capillary ul­

trafiltration coefficient. It must be stressed that though
it is attractive to postulate that the increase in GFR is
responsible for the observed natriuresis and diuresis,
this is not always the case. Many studies have detected
no changes in GFR on low-dose ANP infusion while
natriuresis and diuresis occurred (53); at higher doses,
the increase in GFR is more marked (54). Several
investigators also believe that ANP also directly alters
tubular Na+ and water reabsorption and thereby causes
the observed effects (55). Moreover, experimental
studies have shown that high doses of the peptide,
injccted into man, increase urine volume and electro­
lyte excretion, lower arterial pressure, and renin and
aldosterone concentrations, while raising heart rate,
hematocrit and plasma noradrenaline (56). These data
along with a host of information from animal experi­
ments (41, 42, 47) have suggested to many observers
that atrial peptides serve as protectors against fluid
overload, and as a counterbalance to the renin-angio­
tensin system and perhaps and sympathetic system. But
there is uncertainity as to whether or not ANP plays
a pathophysiologically important role in man. If indeed
atrial peptides are important to the maintenance of
fluid volume and arterial pressure in normal man and
in patients with disorders of fluid balance, then a
couple of predictions miglft be made. First ANP lev­
els should respond predictably to volume-loading or
pressor stimuli. It is well-known that manoeuvers
which increase the volume of the central circulation
stimulate ANP release (56) and also a dose-response
relationship has been demonstrated (57). Second, a
physiological and pathophysiological role would be
supported by evidence that minor increases in plasma
ANP, to levels seen in clinical disorders and prefera­
bly within the range seen in healthy volunteers induced .
clear-cut biological effects. Cuneo et al. (58) demon­
strated that low-dose infusion of ANP inhibits the
normal aldosterone response to angiotensin II in
sodium-restricted subjects, while also suppressing renin
levels. Similarly Morice et al. (59) reported an increase
in urinary sodium excretion with low-dose of ANP.
There is therefore a general consensus that plasma
ANP levels are increased in response to control
hypervolemia.
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Mechanism of action

ANP binds to stereospecific cell surface recep­
tors and thereby evokes physiological responses in
target cells. This hormone-receptor interaction induces
the plasma membrance associated guanylate cyclase
which converts MgGlP to cGMP. The cGMP activates
cGMP-dcpendent protein kinases, which in tum are
capable of phosphorylating a large number of intra­
cellular proteins, thereby expressing the physiological
actions induced by ANP.

a) ANP Receptors

Autoradiography has identified specific ANP
binding sites in various target tissues, most notably of
which are the kidney, adernal and the vasculature.
Receptors have also been identified in the cetra1 nerv­
ous system, pigmented epithelium and ciliary process
of the eye, hepatocytes, gall bladder, colonic smooth
muscle and lung parenchyma (60-62). In the kidney,
binding sites are shown to be concentrated in large
renal vessels, glomeruli and renal medulla (63).
Besides binding sites have also been identified in a
number of cell types including adrenal glomerulosa
cells, renal inner medullary collecting duct cells, renal
glomerular mesangial and endothelial cells, arterial
smooth muscle and endothelial cells and the pig
kidney epithelial cell line LLC-PKI (64-65).

Radioreceptor assay systems and affinity cross­
linking experiments have suggested the presence of sev­
eral distinct cell surface ANP binding sites in most
cells and tissues (66,67). However, there still exists
considerable debate over the nature, function and even
in fact existence of these receptors amongst the inves­
tigations. A consensus of different opinions agrees on
the existence of at least three different receptors viz.
ANP-receptor 1 (ANP-Rl), ANP-R2 and ANP-R3.

ANP-R 1 also is a membrane-associated protein
with an apparent molecular mass of 130 kDA (68,69).
It has a selective affinity for ANP (1-28) (64). The
binding of ANP at R1 activates particulate guanylate
cyclase (70). Studies have confirmed the ANP bind­
ing site and guanylate cyclase activity on the same
transmembrane protein (71). It must be mentioned that
another 180-kDa membrane protein with guanylate
cyclase activity was also purified to homogeneity from
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rat adrenocortical cells (72). The 1: I ANP-receptor
stoichiometry suggests that this receptor too is a bi­
functional protein (72). However, further investigation
including the sequencing of the gene that encodes this
180-kDa ANP binding site is required to decide
whether it is a distinct receptor or currently known
ANP receptors associated with other membrane-bound
proteins.

ANP-R2, also referred to as the clearance recep­
tor or C-receptor, is a plasma-membrane associated
protein that binds ANP with high affinity. SDS-PAGE
analysis has shown it to be a 120-130 kDa molecular
mass under non-reducing conditions (65-70 kDa under
reducing conditions) (68, 69, 73). This receptor is
devoid of guanylate cyclase activity, the second mes­
senger for expression of the biological activites of
ANP. In fact, there is no evidence whatsoever to
suggest that binding of ANP to this receptor is capable
of eliciting specific cellular responses. Moreover, this
receptor not only binds ANP (1-28) or the bioactive
ANP but also ANP fragments and internally ring­
deleted ANP analogues with equal affinity (74). The
ANP-R3 is also a distinct receptor for ANP sharing
over 70% homology in the guanylate cyclase and
kinase domains. It has been identified in human pla­
centa and rat brain (75, 76). However, no specific
function has yet been ascribed to it.

b) Guanylate cyclase

Guanylate cyclase belongs to a family of pro­
teins involved in cell signalling mechanisms. 1l has
been shown to exist in various cellular compartments,
and its different forms are yet to be resolved (77).
Different forms have been recognized based on their
presence in the plasma membrane, cytosol or a deter­
gent-insoluble cytoskeletal fraction (78,79). Thus,
studies have shown that Ca2

• via an intermediary
binding protein regulates guanylate cyclase (80) which
in this case probably resides in the plasma membrane
or cytoskeleton. Ca2

' has been shown to be capable of
modulating the activity of guanylate cyclase, In sev­
eral species it has been conclusively proved that
addition of Ca2' stimulates the plasma membrane
associated guanylate cyc lase (80). A role for calmo­
dulin has been suggested in mediating this respons
though the exact nature of the intermediary binding
protein is under dispute (81).
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The plasma membrane-associated forms of
guanylate cyclase, known to be transmembrane proteins
(82) can be regulated by various peptides. These on
SDS-PAGE analysis have a molecular weight ranging
from 120,000 to 180,000 Da. They can be distin­
guished from the soluble form of guanylate cyclase in
that while the soluble form exhibits linear kinetics as
a function of the substrate (77,78), the particulate or
plasma membrane form characteristically displays
positive cooperative behaviour as a function of the
substrate (77,78).

The physiological effects of ANP involve inter­
actions at the target cell surface resulting ill the acti­
vation of particulate guanylate cyclase and the eleva­
tion of intracellular levels of cGMP. The binding of
a ligand to an extracellualr domain of the guanylate
cyclase transmiL<; a signal to an intracellular catalytic
site. Indeed, ANP stimulates particulate guanylate
cyclase in a concentration-dependent manner in respon­
sive tissues where it exclusively stimulates the maxi­
mum enzyme activity (Vmax) without altering the
Michaelis constant (K

m
) of the enzyme (83). ANP

binding to the receptor domain of guanylate cyclase
induces conformational changes in an adjacent catalytic
domain, thereby increasing the rate of cGMP forma­
tion. Cyclic GPM then acts as the "second messenger"
coupling ANP-membrane interactions to the ultimate
physiological response.

In vascular smooth muscle, cGMP activates
cGMP-dependent protein kinase and phosphorylates a
number of intracellular proteins (84). cGMP also
dephosphorylates myosin light chains thereby inducing
relaxation of vascular muscle. In the kidney
phosphorylation by cGMP-dependent protein kinase
inhibits a amiloride-sensitive cation Na+ channel (85),
thereby inducing natriuresis. In other cell types,
phosphorylation by cGMP dependent protein kinases
appear to mediate the actions of ANP, but by mecha­
nisms that are poorly understood (86).

In keeping with its role in mediating smooth
muscle relaxation, ANP acting via cGMP has been
postulated to alter the intracellular Mg2+ concentration
(87). The fact that cGMP may play a role in the exit
of Ca2+ from the cell is suggested by the fmding that
cytosolic Ca2+ stores, normally depleted with repeated
agonist stimulation are depleted more rapidly in the
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presence of agents that elevate cytosolic cGMP (88).
Studies have shown that ANP reduces cytosolic Ca2•
concentrations in rat and aortic smooth muscle cells
(52) and rat glomerular mesangial cells (89). The
mechanism by which ANP alters Ca2• mobilization
could invlove regulation at the level of Ca2• release
from intracellular stores, reuptake of Ca2• into these
stores, or Ca2• influx or efflux across plasma mem­
branes. The available evidence thus favors the view
that ANP has a role in mediating cytosolic Ca2• con­
centrations thereby maintaining an optimal intracellu­
lar Ca2• concentration.

PATHOPHYSIOLOGICAL CONSIDERAnONS

Hypertension

The potential role of ANP in mediating nat­
riuresis and diuresis have suggested its possibl involve­
ment in the chronic regulation of blood pressure.
Injection of ANP to normotensive rats reduces blood
pressure, counteracting the effects of angiotensin II,
antidiuretic hormone, and aldosterone (90). This an­
tagonistic effect of ANP for angiotensin II-mediated
vasocostriction has been demonstrated not only in vas­
cular smooth muscle preconstricted with angiotensin II
but also on simultaneoUs infusion in experimental in
vivo studies (91). This effect holds greater significance
in hypertensive studies where the ability of ANP to
reduce the blood pressure is greater. A plausible mec­
hanism forwarded is that normotensives exhibit a
decrease in their vascular resistance as their basis for
lowering BP (92), while in hypertensive it is suggested
that possibly a reduction in cardiac output could be the
plausible explanation (93). This response to ANP in­
fusion may result in a more marked renal loss of salt
and water and more marked inhibition of plasma renin
activity and aldosterone than seen in normotensives.
Contrary evidence also exists in the literature. Korn et
aI. (94) have shown that there is a diminoshed natriu­
retic and diuretic response on ANP infusion, in
hypertensive subjects. At any rate, the effectiveness of
ANP as an antihypertensive agent is limited by the
unavailability of an orally effective preparation. In­
tranasal sprays and inhibitors of the ANP degradative
enzyme may provide a solution to this effect though
further research is warranted.

Hypertension-prone rats atria have a higher ANP
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content (85). Similarly SHR rats also reveal increased
levels of ANP in the atria (19). However, in vitro
studies show that in hypertension-prone rats, the renal
papillary collecting tubular cells generate less cG MP
in response to ANP (95). There is also a blunted
response to ANP induced cGMP generation in SHR as
compared to their WKY controls (74).

Several studies report higher levels of ANP in
hypertensive patients than in their normotensive
controls, though there is a considerable degree of over­
lap. In experimental settings such as the one-kidney
one-clip and DOCA salt models, the increases in atrial
pressures induced by the attendant volume expansion
are associated with elevated ANP levels in plasma.
The transcription rates of the prepro-ANP showed a
linear increase with the volume overload, preceding a
natriuresis that finally reduced the volume overload
experienced by these animals (96). These findings
lend further credence to the role of ANP as a safety
mechanism.

However, borderline and mild essential hyper­
tensives fail to show an increase in plasma ANP
levels. A good deal of confusion awaits clarification,
and the available evidence suggests that ANP is
primarily a short-term or acute regulator. In acute
studies, ANP has been shown to have a narrow thera­
peutic index, with lower doses having little effect and
slightly higher doses inducing intolerable hypotension.
Probably, its use singularly as an antihypertensive
agent may not be spectacular, but in combination with
other drugs may be effective.

Congestive heart failure

In pathophysiological states such as congestive
heart failure (CHF), plasma ANP levels are 5 to 10
fold higher as compared to controls (97,98). Normal
individuals and patients with heart disease who do not
suffer from CHF exhibit plasma ANP levels ranging
from 10 to 50 pmol/L, whereas patients with CHF
typically exhibit levels in excess of 100 pmol/L, with
wide individual variation (99, 101). The plasma level
of ANP correlates closely with indices of the severity
of the CHF, varying directly with right atrial and
pulmonary capillary wedge pressures and inversely
with cardiac index, stroke volume, blood pressure and
New York Heart Association class (102-104). Animal
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models of CHF show that high plasma ANP levels
also correlated inversely with atrial tissue concent­
rations, denoting prompt secretion and little tissue
storage despite high ANP mRNA levels (105). It is
noteworthy that effective therapy for CHF leads to
reductions in plasma ANP levels usually in proportion
to improvement in clinical status and cardiac perform­
ance (101).

There are several reports which indicate that
sensitivity to ANP in the kidney is reduced in heart
failure. One explanation for the reduction in renal
sensitivity may be down-regulation of ANP receptors
in the kidney. Down-regulation of peptide receptors in
response to elevated plasma levels is a well docu­
mented phenomenon noted with other peptide
hormones. Although, whether or not down-regulation
of ANP receptors contribute to the development of
congestive heart failure remains an interesting issue
(106). It may be pointed out that some attempts were
also made to maintain plasma ANP levels by using
neural endopeptidase inhibitors, necessary to prevent
fluid accumulation and vasoconstriction in congestive
heart failure (107).

Diabetes mellitus

Functional changes in the diabetic kidney have
been documented by various studies. Micropuncture
studies in diabetic rats have shown increased GFR.
renal plasma flow (RPF), single-nephron GFR, and
intraglomerular capillary pressure (108,109). The
increased GFR that occurs is probably caused by
greater reduction in afferent than efferent arteriolar
resistances and increased glomerular transcapillary
hydraulic pressure gradient. Several mechanisms have
been implicated to explain the elevated GFR in dia­
betes. e.g. hyperglycemia, growth hormone and
glucagon (110). One of the mechanisms to explain this
hyperliltrdtion implicates a cardiac hormone, ANP with
potent natriuretic and diuretic properties (111). It is
possible that hyperglycemia, with its attendant chronic
plasma volume expansion, stimulates atrial ANP
release and that elevated plasma ANP levels may
contribute to the hyperfiltration observed in diabetes.
A recent report suggests (112) down-regulation of
ANP receptors in diabetic kidney. Experiments from
this laboratory have shown that the ANP receptor­
postreceptor mechanism may have a key role to play
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in modulating the response to diabetes (113-115).
An uncoupling of the receptor-post receptor system
may be the cause of diabetes-induced heart failure
(106).

Myocardial ischemia

Myocardial ischemia with its attendant defects
in cardiac pwnping ability has been shown to be as­
sociated with increasing plasma ANP levels (116).
Though levels varied in the different experimental
observations possibly due to differences in time sam­
pling after the induction of infarct as well as infarct
size, plasma ANP showed a linear correlation with the
severity of clinical manifestations. Severe left ventricu­
lar dysfunction concomitant with a decreased ejection
fraction showed the highest levels of plasma ANP
(117). The atria correspondingly in these rats were low
in tissue ANP content (116). The ejection fraction is
decreased in these animals in spite of compensatory
ventricular hypertrophy. These results probably imply
a compensatory recruilment of the ventricles with an
increased rate of secretion in response to ventricular
dysfunction. The fluid imbalance as a consequence of
the ineffective pumping action of the heart seems to
be the same proximate signal (i.e. atrial stretch)
mediating increase in plasma ANP levels. Moreover,
these animals reveal a blunted ability to excrete a
saline load. Though the mechanism of action still
remains LO be explained, their measurements could be
a sensitive indicator of the degree of left ventricular
dysfunction.

Other cardiac disorders

Numerous studies have documented an increase
in plasma ANP pari passu with arrhythmias (118, 119).
This would suggest that frequency (heart rate) may
also be playing a role in the secretion of ANP. Stud­
ies have shown that patients with atrial fibrillation had
greater levels of plasma ANP than those with sinus
rhythm even in the same New York Heart Association
heart failure class. Plasma ANP levels are markedly
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elevated in patients with a VVI mode pacemaker
accompanied by AV dissociation or atrial fibrillation
whereas they are normal in patients with an AV-se­
quential pacemaker (120). Once again, this would
suggest that abnomlal atrial contraction may also be
causative factor in altering ANP release. It has also
been observed that patients with ventricular tachycardia
had higher levels of plasma ANP than those with atrial
fibrillation or supraventricular tachycardia, as did
subjects with acute versus chronic tachycardia. How­
ever, it is suggested that ventricular rate per se seems
less likely to be important except insofar as it modi­
fies atrial stretch.

Valvular heart disorders are also associated with
alterations in plasma ANP levels. Pathological states
such as mitral stenosis, mitral valve prolapse, etc. are
associated with elevated plasma ANP levels (121). A
probable mechanism for these increased levels could
be explained by increased plasma volume consequent
a defective pumping ability. The relevance in these
situations probably exists in trying to correct for the
impaired pumping ability by decreasing afterioad.
Decreasing ANP levels after valvular replacement
could serve as humoral markers and represent an
improved hemodynamic situation. Future, investigation
is however warranted to delineate clearly the role of
ANP in these conditions.

CONCLUSIONS

The pathophysiology of hemodynamic abnor­
malities in cardiovascular diseases remains largely
unknown. Alterations in ANP levels and target-organ
responsiveness have been implicated in these condi­
tions. From the foregoing review, it can be appreci­
ated that ANP has considerable prognostic and thera­
peutic implications, and future research is warranted.
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